

COURSE PLAN

FIRST: BASIC INFORMATION

College						
College	: Karak Colle	: Karak College				
Department	: Engineerin	g Department				
Course						
Course Title	: Digital Syst	tem Design				
Course Code	: 020406221					
Credit Hours	: 3 (1 Theoretical, 2 Practical)					
Prerequisite	: 020406132 / 020406121					
Instructor						
Name	:					
Office No.	:					
Tel (Ext)	:					
E-mail	:					
Office Hours	:					
Class Times	Building	Day	Start Time	End Time	Room No.	

Text Book

1. Digital System design, Al-Balqa Applied University & KOICA, 2022

References

- 1. Brock J. LaMeres, "Introduction to Logic Circuits & Logic Design with Verilog," 2nd Edition, Springer, 2019
- 2. Volnei Pedroni, "Circuit Design with VHDL" 3rd Edition; The MIT Press, 2020.
- 3. Blaine Readler, "VHDL by Example", Full Arc Press, 2014.

SECOND: PROFESSIONAL INFORMATION

COURSE DESCRIPTION

This course deals with methods for efficient design of high-performance application-specific integrated circuits, and for this purpose, digital systems and hardware description languages(HDLs) are explained together. It specifically covers how to use Verilog, and how to design, implement, and test commonly used analog and digital circuits using Verilog.

COURSE OBJECTIVES

The objectives of this course are to enable the student to do the following:

- Learn and use modern hardware/software design tools to develop modern digital systems.
- Gain an in-depth understanding of hardware description language(HDL)
- Realize different circuits in sequential and combinational ways
- Explain the applications of VHDL in PLDs(Programmable Logic Device) and FPGAs(Field Programmable Gate Array)

• Explain the synthesis, verification and implementation processes targeting FPGAs.

COURSE LEARNING OUTCOMES

By the end of the course, the students will be able to:

CLO1. Explain the basic concept of digital systems

CLO2. Explain and use the basic components of digital systems

CLO3. Design and analysis combinational logic design

CLO4. Apply Verilog to design combinational logic circuits

CLO5. Design and analysis sequential logic design

CLO6. Apply Verilog to design sequential logic circuits

CLO7. Explain various kinds of programmable hardware

COURSE S	YLLABUS		D.C.	
Week	Topic	Topic Details	Reference (Chapter)	Proposed Assignments
		Analog v.s. digital		
1	Review	Number systems	CLO1	
1	Keview	Base conversion	CLOI	
		Binary arithmetic		
		Basic gates		
2	Digital Circuitry	Digital circuit operation	CLO2	
2	and Interfacing	Logic families	CLO2	
		Driving loads		
		Boolean algebra		
2	Combinational	Combinational logic analysis	CLO3	
3	Logic Design	Combinational logic synthesis	CLOS	
		Logic minimization		
4	Verilog - Combinational	History of hardware description		
		languages	CLO4	
		HDL abstraction	CLO4	
		Modern digital design flow		
	Verilog - Combinational	Data types		
5		Module	CLO4	
		Operators		
		Modeling concurrent functionality in		
6	Verilog -	Verilog	CLO4	
6	Combinational	Structural design and hierarchy	CLO4	
		Overview of simulation test benches		
	Verilog -	• Decoders		
7		• Encoders	CLO4	
	Combinational	Multiplexers	CLO4	
		Demultiplexers		
8		Midterm Exam		
	Verilog -	• Adder		
9	Combinational	Subtractor	CLO4	
	Comomational	Multiplier		

Week	Topic	Topic Details	Reference (Chapter)	Proposed Assignments		
		• Divider				
10	Sequential Logic Design	 Sequential logic storage devices Sequential logic timing consideration Finite state machines(FSMs) Counters 	CLO5			
11	Verilog - Sequential	 Procedural assignment Conditional programming constructs System tasks Test benches 	CLO6			
12	Verilog - Sequential	 Modeling sequential storage devices in Verilog Latches Flip-flops 	CLO6			
13	Verilog - Sequential	 Modeling finite state machines in Verilog State memory block Next state logic block Output logic block 	CLO6			
14	Verilog - Sequential	Serial bit sequence detectorVending machine controllerUp/Down counter	CLO6			
15	Programmable Logic	Programmable logic devicesProgrammable arraysField programmable gate arrays	CLO7			
16	Final Exam					

COURSE LEARNING RESOURCES

This module will be taught using available resources including:

- Class lectures, lecture notes, assignments, quizzes, and exams designed to achieve the course objectives.
- Lectures and materials uploaded to the e-learning system.
- Student should read the material covered in class, complete assignments on time, participate in class discussions, and do whatever it takes to grasp the topics.

ONLINE RESOURCES

Any web site or tutorial that offers information about the basics and principles of power electronics analysis.

ASSESSMANT TOOLS

ASSESSMENT TOOLS	%
Projects and Quizzes	20
Mid Exam	30

Final Exam	50
TOTAL MARKS	100

THIRD: COURSE RULES

ATTENDANCE RULES

Attendance and participation are extremely important, and the usual University rules will apply. Attendance will be recorded for each class. Absence of 10% will result in a first written warning. Absence of 15% of the course will result in a second warning. Absence of 20% or more will result in forfeiting the course and the student will not be permitted to attend the final examination. Should a student encounter any special circumstances (i.e. medical or personal), he/she is encouraged to discuss this with the instructor and written proof will be required to delete any absences from his/her attendance records.

GRADING SYSTEM

The grading system for the Diploma Degrees in the Al-Balqa' Applied University is the total mark out of 100%

GRADE	POINTS
FAILED	0-49
PASSED	50-100

REMARKS

Copying assignments, quizzes, or exams from another student will not be tolerated.

Helping other students to cheat in any way or form will not be tolerated.

Excellent attendance is expected.

BAU policy requires the faculty member to assign 35 grade if a student misses 15% of the classes without a valid excuse.

If student miss a class, it is his responsibility to find out about any announcements or assignments he/she may have missed.

Participation in, and contribution to class discussions will affect the final grade positively.

Making any kind of disruption (side talks or mobile ringing) in the class is not allowed and it will affect student negatively.

Makeup exam should not be given unless there is a valid excuse according to BAU policies.

COURSE COORDINATOR	C	U	UI	KSE	CO	OKD	INAI	OK
--------------------	---	---	----	-----	----	-----	------	----

Course Coordinator:	Department Head:
Signature:	Signature:
Date:	Date:

